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Data Assimilation Context

• Data assimilation attempts to bring together 
all available information to make the best 
possible estimate of:
– The atmospheric state
– The initial conditions to a model which will 

produce the best forecast.



Data Assimilation Context

• Information sources
– Observations
– Background (forecast)
– Dynamics (e.g., balances between variables)
– Physical constraints (e.g., q > 0)
– Statistics
– Climatology



Data Assimilation Context
• Must build data assimilation system within context 

of :
– Observing system
– Data handling system
– Forecast model
– Computational resources
– Available knowledge about observations and statistics
– Human resources
– Verification and monitoring system



Atmospheric analysis problem (theoretical)

J = Jb + Jo + Jc

J = (x-xb)TBx
-1(x-xb) + (K(x)-O)T(E+F)-1(K(x)-O) + JC

J = Fit to background + Fit to observations + constraints

x = Analysis
xb = Background
Bx = Background error covariance
K = Forward model (nonlinear)
O = Observations
E+F = R = Instrument error + Representativeness error
JC    = Constraint term



Basic Assumptions (violated)
• Data (forecast and most observations) are unbiased 

– Radiosonde and others commonly biased
– All forecast models have significant biases.
– Satellite observations biased - but corrected.

• Observational errors normally distributed
– Moisture errors not normally distributed because 

moisture cannot be < 0 or >> saturation.
• Background error uncorrelated to observational errors 

– May be true if not using retrievals
– Representativeness error likely correlated



Solution Algorithm
• Solve series of simpler problems with some nonlinear 

components eliminated
• Outer iteration, inner iteration structure
• Outer iteration

– QC
– More complete forward model

• Inner iteration
– Preconditioned conjugate gradient
– Often simpler forward model
– Variational QC
– Solution used to start next outer iteration
– Possibly lower resolution



Atmospheric analysis problem (Practical)
Outer (K) and Inner (L) iteration operators

Linearized radiative transferFull radiative transferRadiances

Linearized model physicsFull model physicsPrecipitation

2-D interpolation2-D interpolation plus 
orography correction

Surface pressure

Integrated layers from 
forecast model

Integrated layers from 
forecast model

Ozone – used as layers

3-D sigma interpolation

reduction below bottom 
level using model factor

3-D sigma interpolation

reduction below bottom 
level using model factor

Wind – surface obs. at 
10m over land, 20m over 
ocean, except scatt.

3-D sigma interpolation 
Below bottom sigma 
assumed at bottom sigma

3-D sigma interpolation 
adjustment to different 
orography

Temperature – surface 
obs. at 2m

L operatorK operatorVariable



Data Assimilation Context
• Over 1.43B observations received per day (most 

satellite data – global system does not include radar 
radial winds).

• Over 7M observations per day used.
• Data selection and quality control eliminate many 

observations
• Data selection applied because of:

– redundancy in data
– reduction in computational cost
– eliminate non-useful observations 



Operational context
• Forecasts must complete within schedule

– Trade-offs
• More accurate formulation – higher resolution
• Improved model – improved analysis
• Enhanced physics – higher resolution
• Etc.

• Must work everywhere – all the time
• Manual intervention should be minimal
• Both operational and research satellites used in systems

– Geostationary and polar platforms



Satellite data

• Only the obs. term (K(x)-O)T(E+F)-1(K(x)-
O), directly involved in use of satellite data 
(and other observations).

• However, impact of the data is greatly 
impacted by other observation terms and 
background term

• This talk will concentrate on the satellite 
part of the observation term



Satellite data context
• One of the biggest data assimilation developments 

in the last 15 years was allowing the observations to 
be different from the analysis variables 
– In variational schemes this is done through the K 

operator
– In OI, the same thing could be done – but was only 

rarely done.
– The development allows us to use the observations as 

they were observed AND allows the use of analysis 
variables with nice properties.



Satellite data
• Satellite data differ from many conventional data in 

that the observations are often indirect observations 
of meteorological parameters
– If x is the vector of meteorological parameters we are 

interested in and 
– y is the observation,
– then y = K(x,z), 

• where z represents other parameters on which the observations 
is dependent 

• K is the physical relationship between x, z and y 



Satellite data

• Example – 
– y are radiance observations,  
– x are profiles of temperature, moisture and ozone.  
– K is the radiative transfer equation and 
– z are unknown parameters such as the surface emissivity 

(dependent on soil type, soil moisture, etc.), CO2 profile, 
methane profile, etc. 

• In general, K is not invertable – thus retrievals.
– Physical retrievals – usually very similar to 1D 

variational problems (with different background fields)
– Statistical retrievals – given y predict x using regression



Satellite data context

• 3-4 D variational analysis can be thought of 
as a generalization of “physical retrieval” to 
include all types of data and spatial and 
temporal variability.

• To use data in  2 steps – retrieval and then 
analysis-- can be done consistently if K is 
linear and if one is very careful – but is 
generally suboptimal.



Satellite data context
• Key to using data is to have good characterization 

of K – forward model.  
• If unknowns in K(x,z) – either in formulation of K 

or in unknown variables (z) are too large data 
cannot be reliably used and must be removed in 
quality control. 
– example, currently we do not use radiances containing 

cloud signal 

• Note that errors in formulation or unknown 
variables generally produce correlated errors.  This 
is a significant source of difficulty. 



Satellite data context

• Additional advantages of using 
observations directly in analysis system
– easier definition of observation errors
– improved quality control 
– less introduction of auxiliary information 
– improved data monitoring



Satellite data assimilation
• Satellite observations currently used

– Atmospheric wind vectors
• Geostationary
• MODIS, TERRA

– SSM/I surface wind speeds
– Scatterometers
– GPS radio-occultation
– SSM/I and TRMM precip. estimates
– SBUV ozone profiles
– Radiances



Satellite data assimilation

• Satellite observations
– Radiances

• AMSU-A (N-15,16,18,METOP,EOS-AQUA)
• AMSU-B/MHS(N-15,16,17,18,METOP)
• HIRS(N-16,17,18,METOP)
• AIRS(EOS-AQUA)
• SSM/I – SSM/IS
• GOES Sounder (1x1- 4 detectors, G-11, G-12)
• Imagers (AVHRR,GOES, METEOSAT, etc.)



Satellite data requirements
• Requirements for operational use of observations

– Available in real time in acceptable format
– Data files need to contain all necessary information
– Assurance of stable data source 
– Accurate forward model (and adjoint) available
– Quality control procedures defined (conservative)
– Observational errors defined (and bias removed if 

necessary) 
– Integration into data monitoring
– Evaluation and testing to ensure neutral/positive impact



Data available in real time in 
acceptable format

• Data formats
– WMO acceptable formats – BUFR – CREX (not really 

relevent) – used by most NWP centers
– Almost every satellite program uses a different format
– Significant time and resources used 

understanding/converting/developing formats

• If data is not available in time for use in data 
assimilation system – not useful



NCEP Production Suite
Weather, Ocean & Climate Forecast Systems
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Analysis/forecast cycle

• Any data not available by cut-off will not be 
used

• Later catch up cycle at +6:00

Data 
Cut-off

2:45

Data 
Processing
2:46-2:52

Analysis
2:54-3:20

Forecast
3:20-4:06
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POES Data Delivery
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Satellite data delivery
• Satellite data must wait until ground station within sight to 

download
• Conflicts between satellites
• Blind orbits (reduced with METOP ground station)
• Proposed NPOESS ground system (METOP currently left 

out)
– SafetyNet is a system of 15 globally distributed receptors 

linked to the centrals via commercial fiber, it enables low data 
latency and high data availability





NPOESS SafetyNetTM Architecture
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Observations
• Availability in real time

– Many research satellite programs do not 
want to or plan on distributing data in real 
time

– However they want their data to be used by 
operational data assimilation system (Helps 
justify program)

– Significant resources and work necessary 
after launch to make data available (e.g. 
AIRS radiances)



Observations
• Necessary information

– To properly use the data all information 
necessary for the forward model should be 
included with the observation.

– However this is often not true.  
– Examples

• Satellite and solar azimuth angles
• Satellite locations (for calculating slant paths)
• Conventional station locations and elevations



Assurance of stable data source

• Changes in data processing can result in 
changes in observation error characteristics

• Notification, testing and provision of test 
data sets essential prior to changes

• For operational satellites – situation OK

• For research satellites – means loss of 
control by instrument/program scientists



Forward Models

• Must be developed for each type of data.

• Improvements in forward model results in 
improved use of data.

• Adjoint model necessary for each forward 
model in inner iteration

• I will show examples for NCEP’s 3D-Var 
system (GSI)



Forward Model
Atmospheric wind vectors (AWV)

• Convert analysis variables to u/v

• 3-D interpolation of u/v increment to 
observation location 

• Compare to obs minus 4-D interpolation of 
Background



Forward Model
Surface wind speed

• Same as AWV to u/v
• 2-D interpolation of u/v to observation location
• Apply reduction factor to 10m from lowest model 

level
• Calculate total wind speed (including background) 

(note nonlinear)
• Compare wind speed to observed wind speed



Forward Model
Scatterometer

• Same as AWV to u/v
• 2-D interpolation of u/v to observation location 
• Apply reduction factor to 10m from lowest model 

level
• Compare u/v to observed u/v
• Note forward model could/should be more complex 

because of ambiguity in wind vectors – use 
backscatter directly? – difficulties in defining 
observational error



Forward Model
GPS radio-occultation

• Convert analysis variables to T, q, p
• Interpolate T,q and p to profiles at observation 

location
• Calculate either refractivity or bending angle

– Tangent linear if inner iteration
– Refractivity:
– Bending Angle: 

• Compare to observation
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Forward Model
Precipitation observations

• Convert analysis variables to T, q, Ps, u, v, cloud liquid 
water

• Interpolate T, q, u, and v profiles and Ps to observation 
location

• Calculate estimate of precipitation from model precipitation 
parameterization
– Tangent linear of calculation – inner iteration
– Need to upgrade to current version of model physics
– Note when estimate of precip is negative must be set to zero

• Compare log observation to log of estimate



Forward Model
SBUV ozone profiles

• Convert analysis variables to ozone

• Interpolate ozone profile to observation 
location

• Integrate ozone profile over layers 
represented by observations

• Compare layer observations to simulated 
ozone observations



Forward Model
Radiances

• Convert analysis variables to T, q, Ps, u, v, ozone
• Interpolate T profiles, q profiles, ozone profiles, u1,v1, Ps and 

other surface quantities to observation location
• Reduce u1 and v1 to 10m values

• Calculate estimate of radiance using radiative transfer model 
(and surface emissivity model)
– Tangent linear of calculation – inner iteration
– Currently simulation does not include clouds

• Apply bias correction
• Compare observation to estimate



Radiative Transfer Model

• Community Radiative Transfer Model

• The CRTM is being developed as the basis for the use of satellite data 
at NCEP (and other locations).

• The radiative transfer problem is split into various components (e.g. 
gaseous absorption, scattering etc) to facilitate independent 
development.

• Want to minimise or eliminate potential software conflicts and 
redundancies.

• Components developed by different groups can “simply” be dropped 
into the framework.

• Faster implementation of new science/algorithms.



Radiative transfer model
• CRTM is a fast radiative transfer function (and 

tangent linear, adjoint and Jacobian) (LBL codes 
much too slow)
– Reflected and emitted radiation from surface (emissivity, 

temperature, polarization, etc.)
– Atmospheric transmittances dependent on moisture, 

temperature, ozone, clouds, aerosols, CO2, methane, ...
– Cosmic background radiation (important for microwave)
– View geometry (local zenith angle, view angle (polarization))
– Instrument characteristics (spectral response functions, etc.)
– Scattering from clouds, precipitation and aerosols



CRTM Schematic



Satellite Radiance Observations 

• Measure upwelling radiation at top of 
atmosphere

• Measure deep layers 
– IR not quite as deep as microwave
– New IR instruments (AIRS, IASI, GIFTS) 

narrower, but still quite deep layers
– Deep layers generally implies large horizontal 

scale



Forward model and adjoint for RT

• RTTOV – CRTM two examples of fast forward models
• From CRTM get both simulated radiance and 
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Quality control procedures
• The quality control step may be the most important 

aspect of satellite data assimilation
• Data must be removed which has gross errors or 

which cannot be properly simulated by forward 
model

• Most problems with satellite data come from 2 
sources
– Instrument problems
– Inability to properly simulate observations



Quality Control 
Major problems

• Atmospheric wind vectors
– Improper height assignment
– Correlated errors – more is not better
– Bad winds

• SSM/I surface wind speeds
– Precipitation
– Land/ice

• Scatterometers
– Precipitation
– Improper ambiguity removal
– Land/ice

• GPS radio-occultation
– Loss of signal
– Improper removal of  ionosphere



NH % refractivity difference



SH % refractivity difference



Tropics % refractivity difference



Quality Control 
Major problems

• SSM/I and TRMM precip. estimates
– Bad estimates
– Ice/snow

• SBUV ozone profiles
– Bad profiles

• IR and Microwave Radiances
– IR cannot see through clouds – cloud heights difficult to determine
– Microwave impacted by clouds and precipitation but signal from 

thinner clouds can be modeled and mostly accounted for in bias 
correction 

– Surface emissivity and temperature not well known for 
land/snow/ice

• Also makes detection of clouds/precip. more difficult









AMSU-A Channel 9



Quality control procedures
(thinning)

• Some data is thinned prior to using
• Three reasons

– Redundancy in data
• Radiances

• AMWs

– Reduce correlated error
• AMWs

– Computational expense
• Radiances



Observational and 
Representativeness error

• Essentially specifies the weight given an 
observation.

• Current assumption – errors are uncorrelated
– Some error specifications (e.g., radiances) increased 

because of this.

• Includes instrument error, forward model 
error and representativeness error



Observational and Representativeness 
errors

• Specified somewhat empirically.  
– Errors quoted by instrument developers - lower bound
– Fits to observations to simulated observations – upper bound
– Specification of errors can be verified with some necessary 

conditions in analysis system

• Generally for satellite data errors are specified a bit 
large since the correlated errors are not well known.

• Bias must be accounted for since it is often larger than 
signal



Satellite observations

• Different observation and error 
characteristics
– Type of data (cloud track winds, radiances, etc.) 
– Version of instrument type (e.g., IR sounders 

-AIRS, HIRS, IASI, GOES, GIFTS, etc.)
– Different models of same instrument (e.g., 

NOAA-15 AMSU-A, NOAA-16 AMSU-A)



Bias Correction
• The differences between simulated and observed 

observations can show significant biases
• The source of the bias can come from

– Biased observations
– Inadequacies in the characterization of the instruments
– Deficiencies in the forward models
– Biases in the background

• Except when the bias is due to the background we 
would like to remove these biases



Bias Correction
• Currently we are only bias correcting, the radiances and the 

radiosonde data (radiation correction)
• For radiances, biases can be much larger than signal.  

Essential to bias correct the data
• NCEP uses a 2 step process for radiances (others are 

similar)
– Angle correction (very slowly evolving – different correction for 

each scan position)
– Air Mass correction (slowly evolving based on predictors)





Satellite radiance observations
Bias correction

• Air Mass prediction equation for bias
– Coefficients in equation analysis variable w/ 

background previous values
– Predictors

• mean
• path length (local zenith angle determined)
• integrated lapse rate
• integrated lapse rate ** 2
• cloud liquid water





NOAA 18 AMSU-A
No Bias Correction



NOAA 18 AMSU-A
Bias Corrected



G-O histogram

DMSP15   July2004 : 1month 
       before bias correction
       after bias correction
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Data Monitoring

• It is essential to have good data monitoring. 

• Usually the NWP centres see problems with 
instruments prior to notification by provider 
(UKMO especially)

• The data monitoring can also show 
problems with the assimilation systems

• Needs to be ongoing/real time



Quality Monitoring of Satellite Data
AIRS Channel 453 26 March 2007

Increase in SD
Fits to Guess



Summary Plots



Data counts



Total bias correction



Horizontal o-g (bias corrected)



Horizontal o-g (not bias corrected)



Bias Coefficients



Data Monitoring

• ITSC web site listing monitoring from 
many centres
http://cimss.ssec.wisc.edu/itwg/nwp/monitoring.shtml

• NCEP web site
   http://www.emc.ncep.noaa.gov/gmb/gdas/radiance/su/opr/index.html

http://cimss.ssec.wisc.edu/itwg/nwp/monitoring.shtml
http://www.emc.ncep.noaa.gov/gmb/gdas/radiance/su/opr/index.html
http://www.emc.ncep.noaa.gov/gmb/gdas/radiance/su/opr/index.html


Data impact

• Satellite data extremely important part of 
observation system.  

• Much of the improvement in forecast skill can be 
attributed to the improved data and the improved 
use of the data

• Must be measured relative to rest of observing 
system – not as stand alone data sets

• Extremely important for planning ($$$$)





Observing 
System

Experiments
(ECMWF - G. 

Kelly et al.)

500Z, N.Hem, 89 cases

500Z, S.Hem, 89 cases
NoSAT= no satellite 
radiances or winds

Control= like operations

NoUpper=no radiosondes, 
no pilot winds, no wind 
profilers



Jung and 
Zapotocny

JCSDA
Funded by 

NPOESS IPO

Satellite data 
~ 10-15% impact

Impact of Removing AMSU, HIRS, GOES Wind, Quikscat Surface Wind Data on 
Hurricane Track Forecasts in the Atlantic Basin - 2003 (34 cases)
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JCSDA AIRS Testing
• NCEP operational 

system
– Includes first 

AIRS data use

• Enhanced AIRS 
data use
– Data ingest 

includes all AIRS 
footprints

– 1 month at 55 km 
resolution

– Standard data 
selection 
procedure
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Summary
• Operational data assimilation of satellite data 

requires:
– Data available in real time in acceptable format
– Necessary information in data file
– A stable data source
– Quality control procedures to be defined
– Bias correction and observational errors defined 
– An accurate forward model
– Data monitoring
– Evaluation and testing to ensure neutral/positive impact



Additional information

• International TOVS Working Group 
(ITWG) – just radiances but still very useful 
http://cimss.ssec.wisc.edu/itwg/nwp

• NOAA POES status http://
www.oso.noaa.gov/poesstatus/

• NOAA GOES status http://
www.oso.noaa.gov/goesstatus/

http://cimss.ssec.wisc.edu/itwg/nwp
http://cimss.ssec.wisc.edu/itwg/nwp
http://www.oso.noaa.gov/poesstatus/
http://www.oso.noaa.gov/poesstatus/
http://www.oso.noaa.gov/poesstatus/
http://www.oso.noaa.gov/goesstatus/
http://www.oso.noaa.gov/goesstatus/
http://www.oso.noaa.gov/goesstatus/


Future

• New satellite data types/uses
– Imagery (especially 4D) replacing AMWs
– Use of cloud information in imager/sounders
– New quantities – aerosols, constituent gases, 

surface parameters, etc.
– Wind lidars
– etc.



Future
• Many new “enhanced” instruments 

METOP/NPP/NPOESS
• Impact experiments – must be done well

– All other observations used
– Accuracy of:

• Forecast model
• Observations
• Simulations of observations
• Statistical formulations for errors

– Computing Capability (Determines sophistication of 
assimilation techniques)



Metop-A (Metop-2)
• Launched 19 October 2006
• Instruments

– AMSU-A (Advanced Microwave Sounding Units)
– MHS (Microwave Humidity Sounder)
– HIRS-4 (High-resolution Infrared Radiation Sounding)
– IASI (Infrared Atmospheric Sounding Interferometer)
– GOME-2 (Global Ozone Monitoring Experiment)
– GRAS (Global navigation satellite system reciever for 

Atmospheric Sounding)
– ASCAT (Advanced Scatterometer)
– AVHRR (Advanced Very High Resolution Radiometer)



Current Polar Current Polar 
Orbiting SystemsOrbiting Systems



Metop-A (Metop-2)

• Heritage Instruments
– AMSU-A
– HIRS-4
– AVHRR
– MHS 
– Operationally using AMSU, HIRS, MHS



Operational AMSUA CH5 vs METOP

2007050812 GDAS cycle



Metop-A (Metop-2)

New instruments
– GRAS

• GPS receiver similar to COSMIC, CHAMP, etc.
• Usage under development – but should be similar to 

COSMIC (advantage of GPS-RO observations)
• Sensitive to temperature, moisture profiles

– GOME-2
• Measures absorption of reflected solar radiation
• Measures O3, NO2, SO2



Metop-A (Metop-2)

New instruments
– ASCAT

• Active radar – backscatter measurement
• 3 antenna for each swath (2 swaths)
• Observing “same” backscatter from 3 directions
• Find speed/direction which best fits observations
• Impacted by clouds/precipitation
• Directional ambiguity tough



Metop-A (Metop-2)

New instruments
– IASI

• Produces high spectral resolution IR measurements of the 
atmosphere

• Similar to AIRS except interferometer measurement more 
prone to correlated errors 

• Usage under development

• Sensitive to temperature, moisture, cloud tops, surface 
temperature, surface emissivity, integrated O3, CO, CH4, N2O

• Clouds intercept signal



NPOESS Preparatory Project (NPP)

• Transition mission between DMSP/NOAA 
and NPOESS

• Major instruments from NPOESS (without 
improved communication)

• Still changing

• Launch date “about 2009”



NPOESS Preparatory Project (NPP)

• Instruments
– VIIRS (Visible/Infrared Imager/Radiometer 

Suite)
• Higher resolution/more bands version of AVHRR

– ATMS (Advanced Technology Microwave 
Sounder)

• Similar to AMSU-A/B – MHS (with 2 more 
channels)



NPOESS Preparatory Project (NPP)

• Instruments
– CrIS (Cross-track Infrared Sounder)

• Interferometer based (more correlated errors?)
• Clouds 

– OMPS (Ozone Mapping and Profiler Suite )
• Measures along-track limb scattered solar radiance 
• Scanning instrument provides profiles of ozone



NPOESS

• National Polar-Orbiting Operational 
Environmental Satellite System ( NPOESS)

• Contains NPP instruments + 
– Perhaps a conical scanning microwave 

instrument

• Troubled program – additional changes 
likely in my opinion





NPOESS Flight Schedule

F17

F19

F18

F20

F16

F13

M

N N’

NPP

MetOp A
MetOp B

MetOp C

C1

C2

C3

AM

Mid
AM

PM

05 06 07 08 09 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2510

AQUA

MetOp D

C4

CALENDAR YEAR

NPOESS and METOP team up to replace Heritage Systems



Future
• Rational decision process for observing system 

design 
– Politics and money are important for satellite data
– How to determine relative importance for new 

instruments?– OSSEs? 

• Tremendous volume of satellite data coming in the 
future from a wide variety of instruments

• Development of the proper data handling systems 
and models to simulate this data will be necessary



Final Comments 

• The presence of satellite has virtually eliminated data voids.
• Satellite data must be used carefully because of biases or 

correlated errors in the data or processing.
• Still lots of work to be done 

– Difficult to even keep up with current programs
• At NCEP we currently have projects underway to use:

– METOP IASI
– AVHRR
– GOES imagery
– AMSR-E
– SSM/IS radiances



Final Comments
(Opinion based on experience)

• For NWP, satellite radiances most important satellite 
observation 
– Microwave radiances more useful than IR radiances because of 

clouds
• More observations are not always better
• Impact of new instruments never as large as predicted by 

instrument advocates
– Instruments justified based on NWP impacts

• Larger improvement usually occurs because of 
improvement to assimilation systems than the addition of 
new data



Final Comments
(Opinion based on experience)

• Most applied research in atmospheric data assimilation done 
at operational centers (and GSFC DAO)

• Much of expertise and knowledge is undocumented or 
minimally documented – papers are not the priority at 
operational centers

• Many opportunities to use new observations and to improve 
forward models for DA.

• Data assimilation is where everything comes together
– To use new observations properly requires one to become an 

expert in that particular instrument
– One must be knowledgeable on forecast model dynamics and 

physics to understand background errors
– Computational techniques are necessary to improve efficiency



Final Comments
(Opinion based on experience)

• Very few satellite programs justified by their impact on data 
assimilation actually account for data assimilation in their 
program
– Cost and time necessary to assimilate data
– Necessary data communication and data formatting problems
– Impact on computing resources
– AIRS and COSMIC exceptions

• To properly provide data assimilation input to satellite 
programs is a huge time investment.
– There are an infinite number of satellite meetings



Final Comments
(Opinion based on experience)

• It is great to be involved in the operational 
side of data assimilation – it allows you to 
see the data used and have an impact!


